Valladolid has launched the world’s first smart pedestrian crossing

Maybe some of you have already seen it on the media, but for those still unaware… Valladolid has launched the world’s first smart pedestrian crossing!!!

vruits_7

Within the framework of the VRUITS European Project (Improving the safety and mobility of vulnerable road users through ITS applications), and thanks to the close collaboration with the Valladolid City Council, CIDAUT has installed an intelligent system that solves the problem of people detection and counting in all kind of environments using a brand new technology. This idea of measuring and monitoring people flow was found very appealing in order to improve urban mobility and the system quickly found its way on the crossing between the streets Claudio Moyano and Santiago, one of the most crowded spots in Valladolid city centre.

The aim of the installation was on one the hand detect and count pedestrians on Calle Santiago, to measure people flow and see how it varies depending on the time of day and from one day to another. The system is also able to distinguish different directions, allowing making statistics of people following one sense or another separately. On the other hand, Calle Santiago is the main pedestrian street in the city centre, being Claudio Moyano the only road crossing it. This means this particular crossing supports daily a huge amount of people. Taking pedestrian flow into account to adapt traffic lights in real time is crucial to improve pedestrian’s mobility and safety in the crossing.

This new smart system counts all passersby, determining how many people are waiting to cross, and it sends all the information to the traffic lights control to adapt the green phase accordingly if there are too many pedestrians on the waiting areas.

And what is the difference with the traditional push-buttons? Well, this system provides two main advantages over the old-fashioned buttons. Firstly, it does not depend on users to be activated. Sometimes people are oblivious to the need of pushing the button in order to activate the pedestrian green phase on some crossings, while others are impaired and unable to push it, leaving the most vulnerable road users aside. Secondly, this system allows resuming traffic flow if pedestrians are no longer waiting to cross. Haven’t you ever been retained needlessly in some traffic lights just because someone pushed the button and then left?

In addition and in order to increase pedestrian safety even more, a smart lighting module has been also implemented to illuminate pedestrians on the zebra crossing, providing an enhanced visibility so that drivers can perceive pedestrians better and react accordingly.

After all these months of hard work, here is the system installed:

vruits_1vruits_2vruits_3vruits_4  vruits_5

 Installed equipments

vruits_6vruits_7

C/ Santiago, towards Plaza Mayor                         C/ Santiago, towards Plaza Zorrilla

So if you happen to be in Valladolid and walk around that area, remember… we are watching over you!

WASIS: Vibro-acoustic characterisation of the CFRP fuselage section

As one of the last activities carried out within the WASIS FP7 Project, Cidaut performed the vibro-acoustic characterisation of two components, firstly one test panel and secondly the largest fuselage section (1m diameter prototype). In both cases the study covered low and high frequency ranges. The aim of this activity was to validate FEM/BEM models for low frequency range and SEA models for high frequency.

wasis_1wasis_2

wasis_3 wasis_4

The panel dimensions correspond to the real scale size of the aircraft fuselage. The idea was to learn about the panel behaviour before addressing the 1:2 scale aircraft fuselage. Two test methods were used to identify the behaviour at low frequencies: inertance tests and experimental modal analysis. For the high frequencies the Transmission Loss and Radiation Factor were obtained. Trough these parameters coupling loss factors associated with each phenomenon can be derived.

wasis_5 wasis_6wasis_7

To characterize the barrel, two different tests have been designed aiming to reproduce the noise field and acoustic loads the fuselage section would be exposed to in real conditions. In these tests the transmitted energies between different parts of the specimen are measured. Besides, the Transmission Loss and radiation factor were obtained.

To complete this task, vibro-acoustic models of filament winding structures were developed. The results of these models have been correlated with the results of structure characterization. Once the validation of both models was finished, a new model of a full scale filament winding fuselage was carried out.

wasis_8

All these models have helped characterize the vibro acoustic performance of Wasis Composite Prototypes, enabling the project Consortium to assess not only the mechanical performance, but also other factors such as the transmission loss and radiation factor.

Advanced Composite Integrated Skin Panel Structural Testing – Results from Clean Sky ACID Project

Stiffened panels are required in structures which can be obtained by different processes. They can be made by attaching stiffeners to a thin panel or by producing integrally stiffened panels. An innovating manufacturing process based on Liquid Resin Infusion (LRI) can be employed for obtaining integrally stiffened panels. It is based on moulding a dry NCF (Non Crimp Fabric) pre-form of Carbon fibre plies, which is bonded by a one-shot injection process to high stiffness, pre-cured pre-preg T-section stiffeners. This method presents benefits like lower costs in machining and fewer assembly operations.

 

acid

The structural behaviour of integrally stiffened panels is normally better than those panels with attached stiffeners, but the difference is difficult to quantify by analysis, and is dependant on the manufacturing technology. Especially, the major interest is to clarify the structural behaviour of the panels, and more specifically their critical mode of failure.

The immediate solution could be to carry on comparative structural tests on different coupons moulded by different manufacturing methods, but it must be taken into account that habitually employed strain and stress measuring systems are limited to specific predefined points or have limited resolution. As the manufacturing process and materials are expensive, and last a long term, few coupons are available. Therefore, carefully combined measurement systems must be employed to obtain as much information as possible during the test, and also recurrent information is desirable to correlate results obtained by different sources.

As an answer to this scenario, the ACID project was launched to explore and analyze some of the previous factors, trying to study comparatively the mechanical properties and behaviours of different panels obtained by different manufacturing processes.

 

acid_2

To achieve this goal, a testing matrix was accomplished, based on 3 LRI coupons. Two of them are panels with attached stiffeners and the other one is an integrally stiffened panel. It is expected that the results obtained in the tests help to clarify the panels’ behaviour and allow comparing the mechanical advantages versus economic benefits of the manufacturing processes.

The main objectives of the project were described as follows:

  1. Carry on large scale structural tests for obtaining ultimate properties and failure modes of components manufactured by different processes.
  2. Measure strain and stress information during the test in a recurrent manner to combine and correlate the obtained signals which define the structural behaviour of the panels throughout the test.
  3. Analyze the obtained results, establishing a comparison between the behaviours of panels with attached stiffeners and integrally stiffened panels.
  4. Analyze the obtained results, establishing a qualitative comparison between the mechanical advantages versus economic benefits of the manufacturing processes.

The main achievements of the project were the validation of the novel techniques for composite manufacturing due to the result obtained in the tests. The final mechanical response of the differently implemented panels shows great similarities in the main mechanical characteristics (failure load, stiffness, failure mode).

This validation serves as a starting point for further methodologies development and means a widening of the possible applications or fields of Composite materials.

At the same time, the cross comparison of the measurement devices is useful when deciding the most convenient measurement system for each project. The pros and cons are highlighted and an estimative error between systems is obtained.

The major environmental benefit is the validation of the novel cleaner manufacturing composite methodologies (less energy needed, less wastes, lower costs) against conventional procedures in representative playground.

On the 24th of March, CIDAUT will hold an Exploitation Strategy Seminar in the frame of METALMORPHOSIS FP7 European Project

METALMORHPOSIS_0

In a few weeks, the nine partners of METALMORPHOSIS will meet to celebrate the forth Steering Committee Meeting. The overall aim of the project is to develop a new range of novel metal-composite hybrid products for the automotive industry, using the new and innovative electromagnetic pulse technology, which is highly suitable for joining dissimilar metal products. The current application range of this technology will be extended during the project towards joining of composite and metals. Mechanical joints like bolting or riveting are reliable and widely accepted, but they create local stress concentrations which reduce the strength of the components by as much as 50%, enough to eliminate the envisaged weight gains in many designs. Bonded joints are effective, but require very secure engineering, clean production environments and well-trained personnel to ensure reliable joints. Moreover, companies, and specially SMEs, lack the skills to design and produce reliable bonded structures.

METALMORHPOSIS_2

Attending to this scenario, METALMORPHOSIS proposes the design of three automotive components: a shock absorber, a brake pedal and a bumper support. Research efforts have been applied to optimize all the parameters of the joining process combining experiments and simulation by finite elements methodology. The project has recently passed its midline and is evolving as expected.

One day before the meeting, the Exploitation Strategy Seminar will be celebrated at CIDAUT facilities. The working day will start with an ”ice breaking” session and will cover all the aspects and activities of exploitation from the state of the art to the intellectual property rights. The ESS will be driven by an expert and all the partners will attend: Belgium Welding Institute, Centimfe, Cidaut, Ideko, Poynting, Regeneracija, Stam, Tenneco and Toolpresse. The main aim of this Exploitation Strategy Seminar is to have an expert evaluating the list of exploitable results and assessing the partners on the best possible strategies to exploit them, solving the possible ownership and conflicts that arise in the process.

LIFE+ New Jersey Project event in Brussels: Promoting Sustainable Infrastructure in EU Regions

newjersey_3

On March 3rd, a diffusion event organized by the European Road Federation about works carried out on New Jersey project (New Generation of New-Jersey safe barriers using recycled materials and rubber form end-of-life tyres) took place. This event was held in Brussels, at the Committee of the Regions, the EU’s Assembly of Regional and Local Representatives, matching a meeting of the Environment, Climate Change and Energy (ENVE) group of the Committee of the Regions.

All New Jersey Project works were summarized by the Region of Madrid General Roads Directorate, as well as other Research projects supported by the Region of Madrid on Infrastructures.

Besides the main results of New Jersey Project, other Projects related with sustainable Infrastructures and efficiency were introduced by Acciona, Signus, and Cidaut Foundation, some of them related to LIFE + Program.

Cidaut Foundation made a review on Regional concerns of the Green eMotion project results, by showing a successful implementation of electric mobility schemes, as well as the standardization road map, as proposed by Green eMotion parners. Additionally, the Illumetric system for luminance and illumination efficiency assessment was introduced, showing several case samples of the way it can help reaching an effective public spending.

Besides these projects speeches, new Life Programme 2014-2020 details were introduced by DG ENVI European commission member, Mr Hervé Martin, as well as the new Public Procurement Directive, oriented to boost innovative solution on public contracts.

Next steps on New Jersey Project will be the implementation of one of the barriers developed on a Road on the Region of Madrid, dedicated to evaluate actual in-site performance. This implementation will be installed during March 2015 as a permanent barrier, and will be monitored the following months, for evaluating its performance. New Jersey Project is scheduled to end on July 2015.