The AIHRE project is ready to take off

Last 17th of November we celebrated the official KoM of the AIHRE project ‘Analysis and Promotion of Renewable H2 in the POCTEP region’ at the premises of CIDAUT, coordinator of the project.

AIHRE is a 3-year project funded with 1.5 million euros by the Interreg Spain – Portugal Programme (POCTEP). Its objective is the creation of a new cooperation network for research and transfer in the design, operation, management and integration of energy systems based on renewable hydrogen of great interest for implementation in the Poctep area in Spain and Portugal. This network will promote the economic development of the POCTEP region around the green hydrogen value chain in industry. To this end, the AIHRE project aims at strengthening and consolidating research capacities in the POCTEP territory, identifying solutions for the application of renewable hydrogen value chains and promoting knowledge and tools for the implementation of a renewable hydrogen economy in the Poctep area.

The consortium is made up of nine partners, 5 Spanish: CIDAUT, CTA (Technological Corporation of Andalusia), University of Seville, National Institute of Aerospace Technology “Esteban Terradas”, ITG Technological Institute of Galicia and 4 Portuguese: INEGI, University of Porto, University of Évora and Polytechnic Institute of Portalegre. It is a highly complementary network including universities, technology centres and business clusters.

The kick-off meeting started with a brief presentation of each of the entities and a review of the objectives, tasks and results pursued by the project, as well as a review of the timeline for its achievement.

After the meeting, the consortium visited the CIDAUT facilities for the development of hydrogen technologies HyCid.

You can follow the AIHRE progress on our social media and soon on our website to learn more about this exciting initiative. AIHRE is ready to power green hydrogen!

FENNAC PROJECT – Scaling up of production line for ALTRIS cathode material Fennac for use in sodium-ion batteries

Swedish sodium-ion battery developer ALTRIS was selected by InnoEnergy as one of the winning applications for a 2-year innovation project that aimed to scale up its cathode material for Na-ion batteries. The InnoEnergy’s Innovation Project initiative selects companies with sustainable energy innovations that have high commercial potential and provides them with investment funding.

FENNAC project focused on two areas: production scale-up / commercialisation of Fennac, as well as performance and safety testing. ALTRIS was thankful to be joined by two heavyweight partners to realise this project. Ahlstrom-Munksjö, a French manufacturer of fiber-based products that provided heat-resistant separators for the Fennac-based battery cells and CIDAUT the Foundation for Transport and Energy Research and Development in Spain to develop and perform safety cell testing.

https://www.altris.se/news/scaling-up-production-of-fennac-in-2022

The project kicked off in July 2021 with an extensive feasibility study, which included analysis of the market, competitors, value chain, IP protection strategy, business model, and financial projections. The project finished in July 2023 and the outcomes of the project were presented including the design of the pilot production line, procurement of the required large-scale equipment, the design of the recycling system and the required equipment from Altris. CIDAUT also presented his extensively work on the development of test protocols for the safety of Fennac-based cells, with results from the cell components mechanical deformation analysis, the different abuse tests on the complete cells and the simulation models developed in the project to understand the severity of failures in the Na-ion batteries.

Outcomes from the FENNAC project were recently presented from ALTRIS with their commercial-sized sodium-ion battery cell with the highest energy density to date (160 Wh/kg). This achievement is made in a research partnership with NORTHVOLT, a Swedish supplier of high-quality battery cells, which intends to use sodium-ion technology as a foundation for its next-generation energy storage solutions in upcoming markets.

CIDAUT at the 244th Electrochemical Society Meeting

The 244th ECS meeting took place at Gothenburg (Sweden) from the 8th to the 12th of October. This international conference brings together the most active researchers in academia, government, and industry—professionals and students—to engage, discuss, and innovate in the areas of electrochemistry and solid-state science and related technologies. This is the premier destination for industry professionals to experience five days of learning, technical presentations, business development, and networking opportunities.

CIDAUT had the opportunity to present its work on the development of simulation models to improve battery safety. This work is focused on the lithium metal batteries (LMBs) safety studies including the investigation of predictive models to determine the critical parameters that would lead to potential failure and provide critical insights to understand the mechanical and internal short circuit behaviour of LMBs under mechanical abuse. Having a numerical model that correctly represents the cells and its response under different abuse tests could allow identifying main issues and helping on the cell design and chemistries to be used. To develop these models using LS-Dyna, it has been necessary to carry out studies of mechanical deformation on cell components and the complete cells. These studies have offered a better knowledge of the deformation of the inner components of the battery being useful to identify the mechanism that initiate short circuits under mechanical misuse conditions. Building numerical models for batteries requires experimental work that provides not only the data for mechanical behaviour of individual components (anode, cathode, separator, etc.), but also validation data for simulations of internal short circuit induced by mechanical abuse.

Improvement of safety and resiliency of transport and Smart mobility through driver behavioral models.

Automated driving is one of the hot topics in transport research and development. The evolution of advanced driving assistance systems, ADAS, is gradually increasing the automation level of vehicles on the roads. In a near future, highly automated vehicles will be present in the traffic, but the transformation will not be instantaneous and for the coming few decades, vehicles with different level of automation will share the infrastructure giving place to a transition phase where the human and the artificial intelligence will need to coexist.  

CIDAUT, in the frame of European Project BERTHA, develops innovative driver behavioral models to improve safety and resiliency in connected, cooperative and automated mobility (CCAM). The aim of this development is to create a scalable and probabilistic driver behavioral model based mostly on Bayesian Belief Networks, able to cover different aspects of human driving performance at complex scenarios. The models will be implemented to validate technological and practical feasibility of different advanced driving assistance systems, ADAS.

The project is open source oriented and it will share the behavioral model with the scientific community in order to facilitate the easy growth of the project’s scope. An interrelated demonstration in also included to show this model approach as a reference to design human-like, easy predictable and acceptable behavior of automated driving functions in mixed traffic scenarios.

To tackle this ambitious objective, CIDAUT will cooperate with fourteen partners from seven countries and two continents, in the frame of BERTHA project. 

The research leading to these results has received funding from Horizon Europe under Grant Agreement nº 101076360.

r-LightBioCom project held its 2nd Project Meeting

The r-LightBioCom project, funded by the EU, held its second Project Meeting on 26th-27th September 2023. The meeting, attended by more than 30 people, was hosted as an on-site and online hybrid event by the project partners Leibniz-Institut für Verbundwerkstoffe GmbH (Leibniz Institute for Composite Materials) and Hochschule Kaiserslautern (University for Applied Sciences) in Kaiserslautern, Germany.

The first day was dedicated to presenting and discussing the project progress. Work package leader gave an overview of all technical work packages, and the participants reviewed the achievements and results obtained since the project has started. All attendees had the opportunity to see and lay their hands on the first samples produced in the project. Following the technical project progress review, the meeting host Leibniz-Institut für Verbundwerkstoffe GmbH gave all attendees a tour of the research laboratories.

On the second day, the consortium welcomed the newest r-LightBioCom project partner Gen2Carbon, who had just recently become an official partner of the project. After that, all partners focussed on the impact measures of the project as well as the overall project management. The day ended with a visit to the research and development facilities of the project partner Hochschule Kaiserslautern.

The COLHIBRI Project kicks off with its launch meeting at CIDAUT

Last July, the kick-off meeting of the COLHIBRI project was held at the CIDAUT facilities. The meeting was attended by the project partners: COGERSA, IMASA TECHNOLOGIES (IMATECH); Ingeniería y Biogás, S.L. (Inbiogas); JALVASUB Engineering SL and CIDAUT Foundation as coordinator.

The general objective of this project is to develop new systems for the production of electrical and thermal energy based on H2 technologies that constitute a more efficient and cleaner alternative to current cogenerations based on ICE (Internal Combustion Engine). It is also intended that, within the solutions based on H2 technologies, the proposed interaction between them will allow an advantageous solution to be obtained in terms of both investment and operating costs. The strategic objectives consider enhancing the transition towards the circular economy and creating more efficient ways for the production of renovable H2 from biogas, as well as increasing the available supply of renewable H2 and decarbonising the waste treatment industry (WWTP, landfills, anaerobic digestion of waste, etc.).

The kick-off meeting served to officially start research on each of the subsystems that make up the mobile research laboratory that will eventually integrate the complete system consisting of the biogas treatment system, the reforming system for obtaining H2 and the high-temperature PEM stack that will use the H2 obtained. The consortium was convened for an upcoming meeting to start sharing the requirements of each of these subsystems.

During these months, work has also been carried out on the development of the project website (https://colhibri.es/), as well as on the presentation of the project at various dissemination events such as the Green Gas Mobility Summit in Madrid and the III Renewable Gas Exhibition (III Salón del Gas Renovable) in Valladolid.

This project, with file number PR-H2CVAL4-C1-2022-0054, has been approved in the first call corresponding to the “Incentive Programme 4: Basic-Fundamental Research Challenges, Innovative Pilots and Training in Key Enabling Technologies within the Incentive Programmes for the Innovative and Knowledge-based Renewable Hydrogen Value Chain”, included in the framework of the Incentive Programmes for the Innovative and Knowledge-based Renewable Hydrogen Value Chain in the Framework of the Recovery, Transformation and Resilience Plan – Funded by the European Union – NextGenerationEU.

CIDAUT, an active entity in the energy transition.

In recent months, CIDAUT has participated in various conferences and congresses to discuss and disseminate CIDAUT’s vision of the current energy transition.

On 27 June, Alfonso Horrillo, head of CIDAUT’s Energy and Environment area, moderated the round table “Society and Energy Transition” at the 10th Sernauto Congress. He discussed the need to decarbonise mobility by using technologies that allow us to find the right solution for each type of mobility. To this end, we have the challenge of offering citizens sustainable and affordable mobility while maintaining the competitiveness of the industry.

The III OKGREEN Conference “Present and future of green hydrogen in Castilla y León” was held on 5 July in Valladolid, organised by Ok Diario and sponsored by DH2 Energy. José Ignacio Domínguez, head of Energy projects at the CIDAUT Foundation, participated by commenting on the importance of renewable hydrogen as a decarbonising energy vector. He also recalled that we are at the moment of implementing the new hydrogen economy, being necessary to continue with the technological development to reduce costs and increase the reliability of these hydrogen technologies.

Finally, CIDAUT also actively participated in the Green Gas Mobility Summit 2023, organised by GASNAM-Neutral Transport on 20 and 21 September in Madrid. This congress is the reference point for the use of renewable gases in the mobility sector in Spain. During this event, CIDAUT presented different initiatives in which it is working to introduce hydrogen in maritime and road transport. Some of these projects in which CIDAUT participates are: Hydromar project, NewBunker project, Zeppelin project and Colhibri project.

STWIN project – Development of cutting-edge Friction Stir Welding systems supported by real-time monitoring techniques and Artificial Intelligence

The STWIN project, coordinated by CIDAUT, will develop a flexible friction stir welding (FSW) system capable of automatically fabricating complex structures, for a variety of joint configurations, and for a range of steel grades and thicknesses used in the metal construction, automotive and transport sectors.

The project will address the need to improve productivity in the metalworking sector, improvement of the working conditions for welders and operators and the shortage of skilled welding personnel in Europe. This will be achieved by exploiting the specific advantages of the friction stir welding process, in combination with real-time quality control, based on innovative non-destructive testing and their integration with artificial intelligent and smart digital twin solutions. This will lead to a zero-defect manufacturing approach ensuring robustness, stability and repeatability of the process.

In FSW, a rotating tool is pressed into the gap between two parts. The friction between tool and parts produces heat, which leads to plasticising of the materials. The tool is then moved along the joint line. The combination of translation and rotation of the tool transports the material behind the tool, thus creating the joint.

In STWIN, a novel real time monitoring and control system will be built and demonstrated. The intention is to use the measured process parameters like rotation speed, forces, complemented with the measurements by a smart combination of sensors. These relationships will be used by closed-loop AI control algorithms, which will enable real time adjustment of process parameters, guaranteeing an improved joint quality, towards a more sustainable and defect-free production.

The research leading to these results has received funding from Horizon Europe under Grant Agreement nº 101112504.

New Euro NCAP star rating system for vehicles with ADAS features in the framework of MULTI-MOBY project

A few years ago Euro NCAP created the five-star safety rating system to help consumers and businesses compare vehicles more easily. In fact, the number of stars is a fair and transparent picture of how safe a car really is. However, a car can meet the minimum legal demands and it is not eligible for any stars. This does not mean that this car is necessarily unsafe, but it is not as safe as its competitors. 

Within what is evaluated, Euro NCAP bases its assessment on four important areas:

  • Adult Occupant Protection (driver and passenger);
  • Child Occupant Protection:
  • Vulnerable Road Users protection; and
  • Safety Assist, which evaluates driver-assistance and crash-avoidance technologies.

In this last area is where the University of Surrey, in collaboration with CIDAUT and IFEVS, have developed a simulation model which permits the emulation of the advance driver-assistance systems performance. Specifically, it is able to reproduce the performance of the ADAS features that intervene when a car-to-car rear-end crash takes place.

To avoid such crashes, one type of ADAS in the market presently is the collision avoidance system (CAS), which is design to prevent or reduce the severity of the collision. CAS can be further divided into two categories – Autonomous Emergency Braking (AEB) and Forward Collision Warning (FCW). The simulation model developed within the framework of Multi-Moby project is able to emulate the workings of these two systems and to predict the consequences of different accident scenarios. Additionally, the model can reproduce all the case that Euro NCAP takes account in determining the Safety Assist score.

The research leading to these results received funding from the European Union project MULTI-MOBY (GA# 101006953)

CIDAUT works on a simulation model chain for investigating automated vehicle safety

Automated driving is currently one of the major research topics in the automotive field, mainly motivated by the improvement of the safety [[1]]. It is supposed that automated driving will eliminate human error thank to the use of technology; however, as long as the automated vehicles continue to have to share the road with conventional cars, accidents will continue to occur. Against this background, CIDAUT together with i2CAT and CTAG have carried out a simulation model chain aimed at determining the occupant injuries after a side collision in an automated vehicle and in a complex urban environment at different speeds. To do this, it was necessary to digitally simulate both the environment where the accident takes place and the vehicle’s communications (i2CAT), as well as the autonomous car itself (CTAG). For its part, CIDAUT was responsible for determining the damage to the occupant caused by the accident.

The fact that the simulation tool focus on side collisions is principally due to the accidentology study carried out as part of the European OSCCAR project, in which CIDAUT participated. Specifically, it concluded that considering mixed traffic conditions, side impacts will continue to be common in autonomous vehicles (it is estimated that around 20% of the total).

Under that premise, the developed tool chain is able to simulate the consequences of a side impact over the occupant at different positions, and taking into account the communications with other vehicles or infrastructure. Briefly, the fact of being able to simulate V2X Communications allows us to know when the vehicle is informed about the risk of collision. In this way, we can adjust the parameters of the restraint system more realistically, taking into account that this information will allow us to deploy the airbags earlier.

This work is part of @INTEGRA project, an initiative that pursue projects and activities that respond to the major challenges of a new, safer, smarter, more sustainable, connected and automated mobility. The project, which is funded by CDTI through Ministerio de Ciencia e Innovación in the frame of the funding for Excellence in Research Centres “Cervera”, involves the three research centres mentioned above: CTAG, CIDAUT and i2CAT, in addition to ITENE.


[1] Watzening D., Horn M. (2016) Automated driving: safer and more efficient future driving, Springer Interntional Pubishing. ISBN: 978-3-319-31893-6.